Search by PDG name  
   

 

LAMC2  
    


    
      Official symbol:  LAMC2
      Full name:  laminin subunit gamma 2
      Location:  1q25.3
      Also known as:  nicein-100kDa, EBR2, LAMB2T, kalinin-105kDa, EBR2A, LAMNB2, BM600-100kDa
      Entrez ID:  3918
      Ensembl ID:  ENSG00000058085
      Summary:  Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of basement membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Laminins, composed of 3 non identical chains: laminin alpha, beta and gamma (formerly A, B1, and B2, respectively), have a cruciform structure consisting of 3 short arms, each formed by a different chain, and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma chain isomers combine to give rise to different heterotrimeric laminin isoforms which are designated by Arabic numerals in the order of their discovery, i.e. alpha1beta1gamma1 heterotrimer is laminin 1. The biological functions of the different chains and trimer molecules are largely unknown, but some of the chains have been shown to differ with respect to their tissue distribution, presumably reflecting diverse functions in vivo. This gene encodes the gamma chain isoform laminin, gamma 2. The gamma 2 chain, formerly thought to be a truncated version of beta chain (B2t), is highly homologous to the gamma 1 chain; however, it lacks domain VI, and domains V, IV and III are shorter. It is expressed in several fetal tissues but differently from gamma 1, and is specifically localized to epithelial cells in skin, lung and kidney. The gamma 2 chain together with alpha 3 and beta 3 chains constitute laminin 5 (earlier known as kalinin), which is an integral part of the anchoring filaments that connect epithelial cells to the underlying basement membrane. The epithelium-specific expression of the gamma 2 chain implied its role as an epithelium attachment molecule, and mutations in this gene have been associated with junctional epidermolysis bullosa, a skin disease characterized by blisters due to disruption of the epidermal-dermal junction. Two transcript variants resulting from alternative splicing of the 3' terminal exon, and encoding different isoforms of gamma 2 chain, have been described. The two variants are differentially expressed in embryonic tissues, however, the biological significance of the two forms is not known. Transcript variants utilizing alternative polyA_signal have also been noted in literature. [provided by RefSeq, Aug 2011]

    

    
  Overall distribution
    
  Tissue specific distribution
    
 
  
 
Expression restricted in 14 cancer type(s)
   

    
  Overall distribution
    
  Tissue specific distribution
    
 
Gscore (Amp):  0.00  
Gscore (Del):  0.00  
 
   

    
  Overall distribution
    
  Tissue specific distribution
    
 
Mscore:  0.00  
 
   

    
  Overall
    
  Tissue specific
    
 
Total fusion occurrence:  2  
 
Fusions detected in 2 cancer type(s)
 
 

    
  Overall
    
  Tissue specific
    
     
   

    
      Functional class:  Not specified
      JensenLab PubMed score:  112.52  (Percentile rank: 74.41%)
      PubTator score:  92.43  (Percentile rank: 76.64%)
      Target development/druggability level:  TbioThese targets do not have known drug or small molecule activities that satisfy the activity thresholds detailed below AND satisfy one or more of the following criteria: 1) target is above the cutoff criteria for Tdark; 2) target is annotated with a Gene Ontology Molecular Function or Biological Process leaf term(s) with an Experimental Evidence code.
      Tractability (small molecule):  N/A
      Tractability (antibody):  Predicted Tractable - High confidenceTargets located in the plasma membrane; Targets with GO cell component terms plasma membrane or secreted

    







Contact us | | Terms & Conditions.
Copyright © 2020 University of Pennsylvania. All Rights Reserved.